skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bournef, Henry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An inexpensive and simple three-dimensional (3D) printed spectrophotometer that interfaces with smartphone cameras for visualizing and measuring visible wavelength absorbance and analyte quantitation is reported. A conventional spectroscope inspired the spectrophotometer design to maximize visual engagement for educational purposes and functions as a single-beam visible spectrophotometer capable of precise calibration, standard curve generation, and quantitative analysis of real-life samples. Spectrophotometer calibration results using a four-point, red-green-blue coordinate-to-wavelength conversion demonstrate that the 3D-printed device exhibits a linear 5.0 nm/mm dispersion over the 400–700 nm range. Quantitative analysis validation using a smartphone camera and Open Source software (ImageJ) analysis for tartrazine determination demonstrate the molar absorptivity for the external standard tartrazine was significantly lower compared to the literature and commercial instrumentation (0.0062 μM–1cm–1versus 0.0216 μM–1cm–1for the commercial instrument). Still, the accuracy of the device was within the linear range is remarkable, as tartrazine determination in a real-life sample (Mello Yello soft drink) was found to be not statistically different compared to the result obtained on a commercial spectrophotometer (10.6 μM versus 10.5 μM, n = 5, p > 0.05). The device design and computer-aided drafting files are available publicly for Open Access replication and modification, with considerable promise for expanded capabilities and applications beyond visible spectroscopy and educational purposes. 
    more » « less